Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1317.1 | |- A = { x | ph } |
|
| Assertion | bnj1317 | |- ( y e. A -> A. x y e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1317.1 | |- A = { x | ph } |
|
| 2 | hbab1 | |- ( y e. { x | ph } -> A. x y e. { x | ph } ) |
|
| 3 | 1 2 | hbxfreq | |- ( y e. A -> A. x y e. A ) |