Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 26-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj132.1 | |- ( ph <-> E. x ( ps -> ch ) ) |
|
| Assertion | bnj132 | |- ( ph <-> ( ps -> E. x ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj132.1 | |- ( ph <-> E. x ( ps -> ch ) ) |
|
| 2 | 19.37v | |- ( E. x ( ps -> ch ) <-> ( ps -> E. x ch ) ) |
|
| 3 | 1 2 | bitri | |- ( ph <-> ( ps -> E. x ch ) ) |