Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1424.1 | |- A = ( B u. C ) |
|
| Assertion | bnj1424 | |- ( D e. A -> ( D e. B \/ D e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1424.1 | |- A = ( B u. C ) |
|
| 2 | 1 | bnj1138 | |- ( D e. A <-> ( D e. B \/ D e. C ) ) |
| 3 | 2 | biimpi | |- ( D e. A -> ( D e. B \/ D e. C ) ) |