| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1447.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1447.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1447.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1447.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1447.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1447.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1447.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1447.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1447.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1447.10 |
|- P = U. H |
| 11 |
|
bnj1447.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
| 12 |
|
bnj1447.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
| 13 |
|
bnj1447.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 14 |
|
nfre1 |
|- F/ y E. y e. _pred ( x , A , R ) ta' |
| 15 |
14
|
nfab |
|- F/_ y { f | E. y e. _pred ( x , A , R ) ta' } |
| 16 |
9 15
|
nfcxfr |
|- F/_ y H |
| 17 |
16
|
nfuni |
|- F/_ y U. H |
| 18 |
10 17
|
nfcxfr |
|- F/_ y P |
| 19 |
|
nfcv |
|- F/_ y x |
| 20 |
|
nfcv |
|- F/_ y G |
| 21 |
|
nfcv |
|- F/_ y _pred ( x , A , R ) |
| 22 |
18 21
|
nfres |
|- F/_ y ( P |` _pred ( x , A , R ) ) |
| 23 |
19 22
|
nfop |
|- F/_ y <. x , ( P |` _pred ( x , A , R ) ) >. |
| 24 |
11 23
|
nfcxfr |
|- F/_ y Z |
| 25 |
20 24
|
nffv |
|- F/_ y ( G ` Z ) |
| 26 |
19 25
|
nfop |
|- F/_ y <. x , ( G ` Z ) >. |
| 27 |
26
|
nfsn |
|- F/_ y { <. x , ( G ` Z ) >. } |
| 28 |
18 27
|
nfun |
|- F/_ y ( P u. { <. x , ( G ` Z ) >. } ) |
| 29 |
12 28
|
nfcxfr |
|- F/_ y Q |
| 30 |
|
nfcv |
|- F/_ y z |
| 31 |
29 30
|
nffv |
|- F/_ y ( Q ` z ) |
| 32 |
|
nfcv |
|- F/_ y _pred ( z , A , R ) |
| 33 |
29 32
|
nfres |
|- F/_ y ( Q |` _pred ( z , A , R ) ) |
| 34 |
30 33
|
nfop |
|- F/_ y <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 35 |
13 34
|
nfcxfr |
|- F/_ y W |
| 36 |
20 35
|
nffv |
|- F/_ y ( G ` W ) |
| 37 |
31 36
|
nfeq |
|- F/ y ( Q ` z ) = ( G ` W ) |
| 38 |
37
|
nf5ri |
|- ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) ) |