Metamath Proof Explorer


Theorem bnj1447

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1447.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1447.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1447.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1447.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1447.5
|- D = { x e. A | -. E. f ta }
bnj1447.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1447.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1447.8
|- ( ta' <-> [. y / x ]. ta )
bnj1447.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1447.10
|- P = U. H
bnj1447.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1447.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1447.13
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >.
Assertion bnj1447
|- ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) )

Proof

Step Hyp Ref Expression
1 bnj1447.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1447.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1447.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1447.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1447.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1447.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1447.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1447.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1447.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1447.10
 |-  P = U. H
11 bnj1447.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1447.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1447.13
 |-  W = <. z , ( Q |` _pred ( z , A , R ) ) >.
14 nfre1
 |-  F/ y E. y e. _pred ( x , A , R ) ta'
15 14 nfab
 |-  F/_ y { f | E. y e. _pred ( x , A , R ) ta' }
16 9 15 nfcxfr
 |-  F/_ y H
17 16 nfuni
 |-  F/_ y U. H
18 10 17 nfcxfr
 |-  F/_ y P
19 nfcv
 |-  F/_ y x
20 nfcv
 |-  F/_ y G
21 nfcv
 |-  F/_ y _pred ( x , A , R )
22 18 21 nfres
 |-  F/_ y ( P |` _pred ( x , A , R ) )
23 19 22 nfop
 |-  F/_ y <. x , ( P |` _pred ( x , A , R ) ) >.
24 11 23 nfcxfr
 |-  F/_ y Z
25 20 24 nffv
 |-  F/_ y ( G ` Z )
26 19 25 nfop
 |-  F/_ y <. x , ( G ` Z ) >.
27 26 nfsn
 |-  F/_ y { <. x , ( G ` Z ) >. }
28 18 27 nfun
 |-  F/_ y ( P u. { <. x , ( G ` Z ) >. } )
29 12 28 nfcxfr
 |-  F/_ y Q
30 nfcv
 |-  F/_ y z
31 29 30 nffv
 |-  F/_ y ( Q ` z )
32 nfcv
 |-  F/_ y _pred ( z , A , R )
33 29 32 nfres
 |-  F/_ y ( Q |` _pred ( z , A , R ) )
34 30 33 nfop
 |-  F/_ y <. z , ( Q |` _pred ( z , A , R ) ) >.
35 13 34 nfcxfr
 |-  F/_ y W
36 20 35 nffv
 |-  F/_ y ( G ` W )
37 31 36 nfeq
 |-  F/ y ( Q ` z ) = ( G ` W )
38 37 nf5ri
 |-  ( ( Q ` z ) = ( G ` W ) -> A. y ( Q ` z ) = ( G ` W ) )