Metamath Proof Explorer


Theorem bnj1447

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1447.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1447.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1447.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1447.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1447.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1447.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1447.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1447.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1447.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1447.10 𝑃 = 𝐻
bnj1447.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1447.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1447.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
Assertion bnj1447 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑦 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1447.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1447.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1447.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1447.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1447.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1447.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1447.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1447.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1447.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1447.10 𝑃 = 𝐻
11 bnj1447.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1447.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1447.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 nfre1 𝑦𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′
15 14 nfab 𝑦 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
16 9 15 nfcxfr 𝑦 𝐻
17 16 nfuni 𝑦 𝐻
18 10 17 nfcxfr 𝑦 𝑃
19 nfcv 𝑦 𝑥
20 nfcv 𝑦 𝐺
21 nfcv 𝑦 pred ( 𝑥 , 𝐴 , 𝑅 )
22 18 21 nfres 𝑦 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
23 19 22 nfop 𝑦𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
24 11 23 nfcxfr 𝑦 𝑍
25 20 24 nffv 𝑦 ( 𝐺𝑍 )
26 19 25 nfop 𝑦𝑥 , ( 𝐺𝑍 ) ⟩
27 26 nfsn 𝑦 { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ }
28 18 27 nfun 𝑦 ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
29 12 28 nfcxfr 𝑦 𝑄
30 nfcv 𝑦 𝑧
31 29 30 nffv 𝑦 ( 𝑄𝑧 )
32 nfcv 𝑦 pred ( 𝑧 , 𝐴 , 𝑅 )
33 29 32 nfres 𝑦 ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) )
34 30 33 nfop 𝑦𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
35 13 34 nfcxfr 𝑦 𝑊
36 20 35 nffv 𝑦 ( 𝐺𝑊 )
37 31 36 nfeq 𝑦 ( 𝑄𝑧 ) = ( 𝐺𝑊 )
38 37 nf5ri ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑦 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )