Metamath Proof Explorer


Theorem bnj1476

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1476.1
|- D = { x e. A | -. ph }
bnj1476.2
|- ( ps -> D = (/) )
Assertion bnj1476
|- ( ps -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 bnj1476.1
 |-  D = { x e. A | -. ph }
2 bnj1476.2
 |-  ( ps -> D = (/) )
3 nfrab1
 |-  F/_ x { x e. A | -. ph }
4 1 3 nfcxfr
 |-  F/_ x D
5 4 eq0f
 |-  ( D = (/) <-> A. x -. x e. D )
6 2 5 sylib
 |-  ( ps -> A. x -. x e. D )
7 1 rabeq2i
 |-  ( x e. D <-> ( x e. A /\ -. ph ) )
8 7 notbii
 |-  ( -. x e. D <-> -. ( x e. A /\ -. ph ) )
9 iman
 |-  ( ( x e. A -> ph ) <-> -. ( x e. A /\ -. ph ) )
10 8 9 sylbb2
 |-  ( -. x e. D -> ( x e. A -> ph ) )
11 6 10 sylg
 |-  ( ps -> A. x ( x e. A -> ph ) )
12 11 bnj1142
 |-  ( ps -> A. x e. A ph )