Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1503.1 | |- ( ph -> Fun F ) |
|
| bnj1503.2 | |- ( ph -> G C_ F ) |
||
| bnj1503.3 | |- ( ph -> A C_ dom G ) |
||
| Assertion | bnj1503 | |- ( ph -> ( F |` A ) = ( G |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1503.1 | |- ( ph -> Fun F ) |
|
| 2 | bnj1503.2 | |- ( ph -> G C_ F ) |
|
| 3 | bnj1503.3 | |- ( ph -> A C_ dom G ) |
|
| 4 | fun2ssres | |- ( ( Fun F /\ G C_ F /\ A C_ dom G ) -> ( F |` A ) = ( G |` A ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( F |` A ) = ( G |` A ) ) |