Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1538.1 | |- A = { x e. B | ph } |
|
| Assertion | bnj1538 | |- ( x e. A -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1538.1 | |- A = { x e. B | ph } |
|
| 2 | 1 | reqabi | |- ( x e. A <-> ( x e. B /\ ph ) ) |
| 3 | 2 | simprbi | |- ( x e. A -> ph ) |