Metamath Proof Explorer


Theorem bnj1541

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1541.1
|- ( ph <-> ( ps /\ A =/= B ) )
bnj1541.2
|- -. ph
Assertion bnj1541
|- ( ps -> A = B )

Proof

Step Hyp Ref Expression
1 bnj1541.1
 |-  ( ph <-> ( ps /\ A =/= B ) )
2 bnj1541.2
 |-  -. ph
3 2 1 mtbi
 |-  -. ( ps /\ A =/= B )
4 3 imnani
 |-  ( ps -> -. A =/= B )
5 nne
 |-  ( -. A =/= B <-> A = B )
6 4 5 sylib
 |-  ( ps -> A = B )