Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1541.1 | |- ( ph <-> ( ps /\ A =/= B ) ) |
|
bnj1541.2 | |- -. ph |
||
Assertion | bnj1541 | |- ( ps -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1541.1 | |- ( ph <-> ( ps /\ A =/= B ) ) |
|
2 | bnj1541.2 | |- -. ph |
|
3 | 2 1 | mtbi | |- -. ( ps /\ A =/= B ) |
4 | 3 | imnani | |- ( ps -> -. A =/= B ) |
5 | nne | |- ( -. A =/= B <-> A = B ) |
|
6 | 4 5 | sylib | |- ( ps -> A = B ) |