| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1542.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
bnj1542.2 |
|- ( ph -> G Fn A ) |
| 3 |
|
bnj1542.3 |
|- ( ph -> F =/= G ) |
| 4 |
|
bnj1542.4 |
|- ( w e. F -> A. x w e. F ) |
| 5 |
|
eqfnfv |
|- ( ( F Fn A /\ G Fn A ) -> ( F = G <-> A. y e. A ( F ` y ) = ( G ` y ) ) ) |
| 6 |
5
|
necon3abid |
|- ( ( F Fn A /\ G Fn A ) -> ( F =/= G <-> -. A. y e. A ( F ` y ) = ( G ` y ) ) ) |
| 7 |
|
df-ne |
|- ( ( F ` y ) =/= ( G ` y ) <-> -. ( F ` y ) = ( G ` y ) ) |
| 8 |
7
|
rexbii |
|- ( E. y e. A ( F ` y ) =/= ( G ` y ) <-> E. y e. A -. ( F ` y ) = ( G ` y ) ) |
| 9 |
|
rexnal |
|- ( E. y e. A -. ( F ` y ) = ( G ` y ) <-> -. A. y e. A ( F ` y ) = ( G ` y ) ) |
| 10 |
8 9
|
bitri |
|- ( E. y e. A ( F ` y ) =/= ( G ` y ) <-> -. A. y e. A ( F ` y ) = ( G ` y ) ) |
| 11 |
6 10
|
bitr4di |
|- ( ( F Fn A /\ G Fn A ) -> ( F =/= G <-> E. y e. A ( F ` y ) =/= ( G ` y ) ) ) |
| 12 |
1 2 11
|
syl2anc |
|- ( ph -> ( F =/= G <-> E. y e. A ( F ` y ) =/= ( G ` y ) ) ) |
| 13 |
3 12
|
mpbid |
|- ( ph -> E. y e. A ( F ` y ) =/= ( G ` y ) ) |
| 14 |
|
nfv |
|- F/ y ( F ` x ) =/= ( G ` x ) |
| 15 |
4
|
nfcii |
|- F/_ x F |
| 16 |
|
nfcv |
|- F/_ x y |
| 17 |
15 16
|
nffv |
|- F/_ x ( F ` y ) |
| 18 |
|
nfcv |
|- F/_ x ( G ` y ) |
| 19 |
17 18
|
nfne |
|- F/ x ( F ` y ) =/= ( G ` y ) |
| 20 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 21 |
|
fveq2 |
|- ( x = y -> ( G ` x ) = ( G ` y ) ) |
| 22 |
20 21
|
neeq12d |
|- ( x = y -> ( ( F ` x ) =/= ( G ` x ) <-> ( F ` y ) =/= ( G ` y ) ) ) |
| 23 |
14 19 22
|
cbvrexw |
|- ( E. x e. A ( F ` x ) =/= ( G ` x ) <-> E. y e. A ( F ` y ) =/= ( G ` y ) ) |
| 24 |
13 23
|
sylibr |
|- ( ph -> E. x e. A ( F ` x ) =/= ( G ` x ) ) |