Metamath Proof Explorer


Theorem bnj1542

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1542.1 ( 𝜑𝐹 Fn 𝐴 )
bnj1542.2 ( 𝜑𝐺 Fn 𝐴 )
bnj1542.3 ( 𝜑𝐹𝐺 )
bnj1542.4 ( 𝑤𝐹 → ∀ 𝑥 𝑤𝐹 )
Assertion bnj1542 ( 𝜑 → ∃ 𝑥𝐴 ( 𝐹𝑥 ) ≠ ( 𝐺𝑥 ) )

Proof

Step Hyp Ref Expression
1 bnj1542.1 ( 𝜑𝐹 Fn 𝐴 )
2 bnj1542.2 ( 𝜑𝐺 Fn 𝐴 )
3 bnj1542.3 ( 𝜑𝐹𝐺 )
4 bnj1542.4 ( 𝑤𝐹 → ∀ 𝑥 𝑤𝐹 )
5 eqfnfv ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) )
6 5 necon3abid ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( 𝐹𝐺 ↔ ¬ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ) )
7 df-ne ( ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ↔ ¬ ( 𝐹𝑦 ) = ( 𝐺𝑦 ) )
8 7 rexbii ( ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ↔ ∃ 𝑦𝐴 ¬ ( 𝐹𝑦 ) = ( 𝐺𝑦 ) )
9 rexnal ( ∃ 𝑦𝐴 ¬ ( 𝐹𝑦 ) = ( 𝐺𝑦 ) ↔ ¬ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐺𝑦 ) )
10 8 9 bitri ( ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ↔ ¬ ∀ 𝑦𝐴 ( 𝐹𝑦 ) = ( 𝐺𝑦 ) )
11 6 10 bitr4di ( ( 𝐹 Fn 𝐴𝐺 Fn 𝐴 ) → ( 𝐹𝐺 ↔ ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ) )
12 1 2 11 syl2anc ( 𝜑 → ( 𝐹𝐺 ↔ ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ) )
13 3 12 mpbid ( 𝜑 → ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) )
14 nfv 𝑦 ( 𝐹𝑥 ) ≠ ( 𝐺𝑥 )
15 4 nfcii 𝑥 𝐹
16 nfcv 𝑥 𝑦
17 15 16 nffv 𝑥 ( 𝐹𝑦 )
18 nfcv 𝑥 ( 𝐺𝑦 )
19 17 18 nfne 𝑥 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 )
20 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
21 fveq2 ( 𝑥 = 𝑦 → ( 𝐺𝑥 ) = ( 𝐺𝑦 ) )
22 20 21 neeq12d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) ≠ ( 𝐺𝑥 ) ↔ ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) ) )
23 14 19 22 cbvrexw ( ∃ 𝑥𝐴 ( 𝐹𝑥 ) ≠ ( 𝐺𝑥 ) ↔ ∃ 𝑦𝐴 ( 𝐹𝑦 ) ≠ ( 𝐺𝑦 ) )
24 13 23 sylibr ( 𝜑 → ∃ 𝑥𝐴 ( 𝐹𝑥 ) ≠ ( 𝐺𝑥 ) )