Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1542.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
2 |
|
bnj1542.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
3 |
|
bnj1542.3 |
⊢ ( 𝜑 → 𝐹 ≠ 𝐺 ) |
4 |
|
bnj1542.4 |
⊢ ( 𝑤 ∈ 𝐹 → ∀ 𝑥 𝑤 ∈ 𝐹 ) |
5 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
6 |
5
|
necon3abid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ≠ 𝐺 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
7 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ↔ ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
9 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
10 |
8 9
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
11 |
6 10
|
bitr4di |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 ≠ 𝐺 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ≠ 𝐺 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ) |
14 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) |
15 |
4
|
nfcii |
⊢ Ⅎ 𝑥 𝐹 |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
17 |
15 16
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑦 ) |
19 |
17 18
|
nfne |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
22 |
20 21
|
neeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ) ) |
23 |
14 19 22
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐺 ‘ 𝑦 ) ) |
24 |
13 23
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐺 ‘ 𝑥 ) ) |