Description: Well-founded induction restricted to a set ( A e. _V ). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj157.1 | |- ( ps <-> A. y e. A ( y R x -> [. y / x ]. ph ) ) |
|
bnj157.2 | |- A e. _V |
||
bnj157.3 | |- R Fr A |
||
Assertion | bnj157 | |- ( A. x e. A ( ps -> ph ) -> A. x e. A ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj157.1 | |- ( ps <-> A. y e. A ( y R x -> [. y / x ]. ph ) ) |
|
2 | bnj157.2 | |- A e. _V |
|
3 | bnj157.3 | |- R Fr A |
|
4 | 2 1 | bnj110 | |- ( ( R Fr A /\ A. x e. A ( ps -> ph ) ) -> A. x e. A ph ) |
5 | 3 4 | mpan | |- ( A. x e. A ( ps -> ph ) -> A. x e. A ph ) |