Metamath Proof Explorer


Theorem bnj157

Description: Well-founded induction restricted to a set ( A e. _V ). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj157.1
|- ( ps <-> A. y e. A ( y R x -> [. y / x ]. ph ) )
bnj157.2
|- A e. _V
bnj157.3
|- R Fr A
Assertion bnj157
|- ( A. x e. A ( ps -> ph ) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 bnj157.1
 |-  ( ps <-> A. y e. A ( y R x -> [. y / x ]. ph ) )
2 bnj157.2
 |-  A e. _V
3 bnj157.3
 |-  R Fr A
4 2 1 bnj110
 |-  ( ( R Fr A /\ A. x e. A ( ps -> ph ) ) -> A. x e. A ph )
5 3 4 mpan
 |-  ( A. x e. A ( ps -> ph ) -> A. x e. A ph )