| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj66.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj66.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj66.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
fneq1 |
|- ( g = f -> ( g Fn d <-> f Fn d ) ) |
| 5 |
|
fveq1 |
|- ( g = f -> ( g ` x ) = ( f ` x ) ) |
| 6 |
|
reseq1 |
|- ( g = f -> ( g |` _pred ( x , A , R ) ) = ( f |` _pred ( x , A , R ) ) ) |
| 7 |
6
|
opeq2d |
|- ( g = f -> <. x , ( g |` _pred ( x , A , R ) ) >. = <. x , ( f |` _pred ( x , A , R ) ) >. ) |
| 8 |
7 2
|
eqtr4di |
|- ( g = f -> <. x , ( g |` _pred ( x , A , R ) ) >. = Y ) |
| 9 |
8
|
fveq2d |
|- ( g = f -> ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) = ( G ` Y ) ) |
| 10 |
5 9
|
eqeq12d |
|- ( g = f -> ( ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) <-> ( f ` x ) = ( G ` Y ) ) ) |
| 11 |
10
|
ralbidv |
|- ( g = f -> ( A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) <-> A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
| 12 |
4 11
|
anbi12d |
|- ( g = f -> ( ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) <-> ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
| 13 |
12
|
rexbidv |
|- ( g = f -> ( E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) <-> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) ) |
| 14 |
13
|
cbvabv |
|- { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 15 |
3 14
|
eqtr4i |
|- C = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) } |
| 16 |
15
|
bnj1436 |
|- ( g e. C -> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) ) |
| 17 |
|
bnj1239 |
|- ( E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` <. x , ( g |` _pred ( x , A , R ) ) >. ) ) -> E. d e. B g Fn d ) |
| 18 |
|
fnrel |
|- ( g Fn d -> Rel g ) |
| 19 |
18
|
rexlimivw |
|- ( E. d e. B g Fn d -> Rel g ) |
| 20 |
16 17 19
|
3syl |
|- ( g e. C -> Rel g ) |