Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj91.1 | |- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
|
| bnj91.2 | |- Z e. _V |
||
| Assertion | bnj91 | |- ( [. Z / y ]. ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj91.1 | |- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
|
| 2 | bnj91.2 | |- Z e. _V |
|
| 3 | 1 | sbcbii | |- ( [. Z / y ]. ph <-> [. Z / y ]. ( f ` (/) ) = _pred ( x , A , R ) ) |
| 4 | 2 | bnj525 | |- ( [. Z / y ]. ( f ` (/) ) = _pred ( x , A , R ) <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
| 5 | 3 4 | bitri | |- ( [. Z / y ]. ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |