| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj66.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj66.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj66.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
fneq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Fn 𝑑 ↔ 𝑓 Fn 𝑑 ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 6 |
|
reseq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 7 |
6
|
opeq2d |
⊢ ( 𝑔 = 𝑓 → 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑔 = 𝑓 → 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 𝑌 ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 10 |
5 9
|
eqeq12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑔 = 𝑓 → ( ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ↔ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) |
| 12 |
4 11
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ) ) |
| 14 |
13
|
cbvabv |
⊢ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 15 |
3 14
|
eqtr4i |
⊢ 𝐶 = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } |
| 16 |
15
|
bnj1436 |
⊢ ( 𝑔 ∈ 𝐶 → ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 17 |
|
bnj1239 |
⊢ ( ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) → ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 ) |
| 18 |
|
fnrel |
⊢ ( 𝑔 Fn 𝑑 → Rel 𝑔 ) |
| 19 |
18
|
rexlimivw |
⊢ ( ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 → Rel 𝑔 ) |
| 20 |
16 17 19
|
3syl |
⊢ ( 𝑔 ∈ 𝐶 → Rel 𝑔 ) |