Metamath Proof Explorer


Theorem bnj170

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj170
|- ( ( ph /\ ps /\ ch ) <-> ( ( ps /\ ch ) /\ ph ) )

Proof

Step Hyp Ref Expression
1 3anrot
 |-  ( ( ph /\ ps /\ ch ) <-> ( ps /\ ch /\ ph ) )
2 df-3an
 |-  ( ( ps /\ ch /\ ph ) <-> ( ( ps /\ ch ) /\ ph ) )
3 1 2 bitri
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ps /\ ch ) /\ ph ) )