Metamath Proof Explorer


Theorem bnj258

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj258
|- ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ th ) /\ ch ) )

Proof

Step Hyp Ref Expression
1 bnj257
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ph /\ ps /\ th /\ ch ) )
2 df-bnj17
 |-  ( ( ph /\ ps /\ th /\ ch ) <-> ( ( ph /\ ps /\ th ) /\ ch ) )
3 1 2 bitri
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ th ) /\ ch ) )