Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj544.1 | |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
|
bnj544.2 | |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
||
bnj544.3 | |- D = ( _om \ { (/) } ) |
||
bnj544.4 | |- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
||
bnj544.5 | |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
||
bnj544.6 | |- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
||
Assertion | bnj544 | |- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj544.1 | |- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
|
2 | bnj544.2 | |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
3 | bnj544.3 | |- D = ( _om \ { (/) } ) |
|
4 | bnj544.4 | |- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
|
5 | bnj544.5 | |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
|
6 | bnj544.6 | |- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
|
7 | 3 | bnj923 | |- ( m e. D -> m e. _om ) |
8 | 7 | 3anim1i | |- ( ( m e. D /\ n = suc m /\ p e. m ) -> ( m e. _om /\ n = suc m /\ p e. m ) ) |
9 | 6 8 | sylbi | |- ( si -> ( m e. _om /\ n = suc m /\ p e. m ) ) |
10 | biid | |- ( ( m e. _om /\ n = suc m /\ p e. m ) <-> ( m e. _om /\ n = suc m /\ p e. m ) ) |
|
11 | 1 2 4 5 10 | bnj543 | |- ( ( R _FrSe A /\ ta /\ ( m e. _om /\ n = suc m /\ p e. m ) ) -> G Fn n ) |
12 | 9 11 | syl3an3 | |- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |