Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj551 | |- ( ( m = suc p /\ m = suc i ) -> p = i ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 | |- ( ( m = suc p /\ m = suc i ) -> suc p = suc i ) |
|
2 | suc11reg | |- ( suc p = suc i <-> p = i ) |
|
3 | 1 2 | sylib | |- ( ( m = suc p /\ m = suc i ) -> p = i ) |