Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnj551 | |- ( ( m = suc p /\ m = suc i ) -> p = i ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 | |- ( ( m = suc p /\ m = suc i ) -> suc p = suc i ) |
|
| 2 | suc11reg | |- ( suc p = suc i <-> p = i ) |
|
| 3 | 1 2 | sylib | |- ( ( m = suc p /\ m = suc i ) -> p = i ) |