Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnj551 | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → suc 𝑝 = suc 𝑖 ) | |
| 2 | suc11reg | ⊢ ( suc 𝑝 = suc 𝑖 ↔ 𝑝 = 𝑖 ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖 ) → 𝑝 = 𝑖 ) |