| Step |
Hyp |
Ref |
Expression |
| 1 |
|
en2lp |
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) |
| 2 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 3 |
1 2
|
mpbi |
⊢ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) |
| 4 |
|
sucidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
| 5 |
|
eleq2 |
⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵 ) ) |
| 6 |
4 5
|
syl5ibcom |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
| 7 |
|
elsucg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 |
6 7
|
sylibd |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 10 |
9
|
ord |
⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 11 |
10
|
ex |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 12 |
11
|
com23 |
⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ 𝐵 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 |
|
sucidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ suc 𝐵 ) |
| 14 |
|
eleq2 |
⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵 ) ) |
| 15 |
13 14
|
syl5ibrcom |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴 ) ) |
| 16 |
|
elsucg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ suc 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 17 |
15 16
|
sylibd |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 18 |
17
|
imp |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 19 |
18
|
ord |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴 ) ) |
| 20 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 21 |
19 20
|
imbitrdi |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) |
| 22 |
21
|
ex |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) ) |
| 23 |
22
|
com23 |
⊢ ( 𝐵 ∈ V → ( ¬ 𝐵 ∈ 𝐴 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 24 |
12 23
|
jaao |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 25 |
3 24
|
mpi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 26 |
|
sucexb |
⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
| 27 |
|
sucexb |
⊢ ( 𝐵 ∈ V ↔ suc 𝐵 ∈ V ) |
| 28 |
27
|
notbii |
⊢ ( ¬ 𝐵 ∈ V ↔ ¬ suc 𝐵 ∈ V ) |
| 29 |
|
nelneq |
⊢ ( ( suc 𝐴 ∈ V ∧ ¬ suc 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) |
| 30 |
26 28 29
|
syl2anb |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) |
| 31 |
30
|
pm2.21d |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 32 |
|
eqcom |
⊢ ( suc 𝐴 = suc 𝐵 ↔ suc 𝐵 = suc 𝐴 ) |
| 33 |
26
|
notbii |
⊢ ( ¬ 𝐴 ∈ V ↔ ¬ suc 𝐴 ∈ V ) |
| 34 |
|
nelneq |
⊢ ( ( suc 𝐵 ∈ V ∧ ¬ suc 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
| 35 |
27 33 34
|
syl2anb |
⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
| 36 |
35
|
ancoms |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
| 37 |
36
|
pm2.21d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐵 = suc 𝐴 → 𝐴 = 𝐵 ) ) |
| 38 |
32 37
|
biimtrid |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 39 |
|
sucprc |
⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) |
| 40 |
|
sucprc |
⊢ ( ¬ 𝐵 ∈ V → suc 𝐵 = 𝐵 ) |
| 41 |
39 40
|
eqeqan12d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 42 |
41
|
biimpd |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 43 |
25 31 38 42
|
4cases |
⊢ ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) |
| 44 |
|
suceq |
⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) |
| 45 |
43 44
|
impbii |
⊢ ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) |