Step |
Hyp |
Ref |
Expression |
1 |
|
en2lp |
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) |
2 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ↔ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
3 |
1 2
|
mpbi |
⊢ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) |
4 |
|
sucidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) |
5 |
|
eleq2 |
⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ suc 𝐵 ) ) |
6 |
4 5
|
syl5ibcom |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
7 |
|
elsucg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ suc 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
8 |
6 7
|
sylibd |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
10 |
9
|
ord |
⊢ ( ( 𝐴 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) |
11 |
10
|
ex |
⊢ ( 𝐴 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) ) |
12 |
11
|
com23 |
⊢ ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ 𝐵 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
13 |
|
sucidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ suc 𝐵 ) |
14 |
|
eleq2 |
⊢ ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ suc 𝐴 ↔ 𝐵 ∈ suc 𝐵 ) ) |
15 |
13 14
|
syl5ibrcom |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴 ) ) |
16 |
|
elsucg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ suc 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
17 |
15 16
|
sylibd |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
19 |
18
|
ord |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴 ) ) |
20 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
21 |
19 20
|
syl6ib |
⊢ ( ( 𝐵 ∈ V ∧ suc 𝐴 = suc 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) |
22 |
21
|
ex |
⊢ ( 𝐵 ∈ V → ( suc 𝐴 = suc 𝐵 → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) ) |
23 |
22
|
com23 |
⊢ ( 𝐵 ∈ V → ( ¬ 𝐵 ∈ 𝐴 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
24 |
12 23
|
jaao |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
25 |
3 24
|
mpi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
26 |
|
sucexb |
⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
27 |
|
sucexb |
⊢ ( 𝐵 ∈ V ↔ suc 𝐵 ∈ V ) |
28 |
27
|
notbii |
⊢ ( ¬ 𝐵 ∈ V ↔ ¬ suc 𝐵 ∈ V ) |
29 |
|
nelneq |
⊢ ( ( suc 𝐴 ∈ V ∧ ¬ suc 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) |
30 |
26 28 29
|
syl2anb |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ¬ suc 𝐴 = suc 𝐵 ) |
31 |
30
|
pm2.21d |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
32 |
|
eqcom |
⊢ ( suc 𝐴 = suc 𝐵 ↔ suc 𝐵 = suc 𝐴 ) |
33 |
26
|
notbii |
⊢ ( ¬ 𝐴 ∈ V ↔ ¬ suc 𝐴 ∈ V ) |
34 |
|
nelneq |
⊢ ( ( suc 𝐵 ∈ V ∧ ¬ suc 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
35 |
27 33 34
|
syl2anb |
⊢ ( ( 𝐵 ∈ V ∧ ¬ 𝐴 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
36 |
35
|
ancoms |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ¬ suc 𝐵 = suc 𝐴 ) |
37 |
36
|
pm2.21d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐵 = suc 𝐴 → 𝐴 = 𝐵 ) ) |
38 |
32 37
|
syl5bi |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
39 |
|
sucprc |
⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) |
40 |
|
sucprc |
⊢ ( ¬ 𝐵 ∈ V → suc 𝐵 = 𝐵 ) |
41 |
39 40
|
eqeqan12d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |
42 |
41
|
biimpd |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
43 |
25 31 38 42
|
4cases |
⊢ ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) |
44 |
|
suceq |
⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) |
45 |
43 44
|
impbii |
⊢ ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) |