Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj561.18 | |- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
|
bnj561.19 | |- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
||
bnj561.37 | |- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
||
Assertion | bnj561 | |- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj561.18 | |- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
|
2 | bnj561.19 | |- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
|
3 | bnj561.37 | |- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
|
4 | 1 2 | bnj556 | |- ( et -> si ) |
5 | 4 3 | syl3an3 | |- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |