Metamath Proof Explorer


Theorem bnj562

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj562.18
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) )
bnj562.19
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
bnj562.38
|- ( ( R _FrSe A /\ ta /\ si ) -> ph" )
Assertion bnj562
|- ( ( R _FrSe A /\ ta /\ et ) -> ph" )

Proof

Step Hyp Ref Expression
1 bnj562.18
 |-  ( si <-> ( m e. D /\ n = suc m /\ p e. m ) )
2 bnj562.19
 |-  ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) )
3 bnj562.38
 |-  ( ( R _FrSe A /\ ta /\ si ) -> ph" )
4 1 2 bnj556
 |-  ( et -> si )
5 4 3 syl3an3
 |-  ( ( R _FrSe A /\ ta /\ et ) -> ph" )