Description: Equality theorem for the _pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnj602 | |- ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( X = Y -> ( y R X <-> y R Y ) ) |
|
| 2 | 1 | rabbidv | |- ( X = Y -> { y e. A | y R X } = { y e. A | y R Y } ) |
| 3 | df-bnj14 | |- _pred ( X , A , R ) = { y e. A | y R X } |
|
| 4 | df-bnj14 | |- _pred ( Y , A , R ) = { y e. A | y R Y } |
|
| 5 | 2 3 4 | 3eqtr4g | |- ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) ) |