Metamath Proof Explorer


Theorem bnj610

Description: Pass from equality ( x = A ) to substitution ( [. A / x ]. ) without the distinct variable condition on A , x . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj610.1
|- A e. _V
bnj610.2
|- ( x = A -> ( ph <-> ps ) )
bnj610.3
|- ( x = y -> ( ph <-> ps' ) )
bnj610.4
|- ( y = A -> ( ps' <-> ps ) )
Assertion bnj610
|- ( [. A / x ]. ph <-> ps )

Proof

Step Hyp Ref Expression
1 bnj610.1
 |-  A e. _V
2 bnj610.2
 |-  ( x = A -> ( ph <-> ps ) )
3 bnj610.3
 |-  ( x = y -> ( ph <-> ps' ) )
4 bnj610.4
 |-  ( y = A -> ( ps' <-> ps ) )
5 vex
 |-  y e. _V
6 5 3 sbcie
 |-  ( [. y / x ]. ph <-> ps' )
7 6 sbcbii
 |-  ( [. A / y ]. [. y / x ]. ph <-> [. A / y ]. ps' )
8 sbccow
 |-  ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph )
9 1 4 sbcie
 |-  ( [. A / y ]. ps' <-> ps )
10 7 8 9 3bitr3i
 |-  ( [. A / x ]. ph <-> ps )