Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj62 | |- ( [. z / x ]. x Fn A <-> z Fn A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- y e. _V |
|
2 | fneq1 | |- ( x = y -> ( x Fn A <-> y Fn A ) ) |
|
3 | 1 2 | sbcie | |- ( [. y / x ]. x Fn A <-> y Fn A ) |
4 | 3 | sbcbii | |- ( [. z / y ]. [. y / x ]. x Fn A <-> [. z / y ]. y Fn A ) |
5 | sbccow | |- ( [. z / y ]. [. y / x ]. x Fn A <-> [. z / x ]. x Fn A ) |
|
6 | vex | |- z e. _V |
|
7 | fneq1 | |- ( y = z -> ( y Fn A <-> z Fn A ) ) |
|
8 | 6 7 | sbcie | |- ( [. z / y ]. y Fn A <-> z Fn A ) |
9 | 4 5 8 | 3bitr3i | |- ( [. z / x ]. x Fn A <-> z Fn A ) |