Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj946.1 | |- ( ph <-> A. x e. A ps ) |
|
| Assertion | bnj946 | |- ( ph <-> A. x ( x e. A -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj946.1 | |- ( ph <-> A. x e. A ps ) |
|
| 2 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 3 | 1 2 | bitri | |- ( ph <-> A. x ( x e. A -> ps ) ) |