Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj958.1 | |- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
|
| bnj958.2 | |- G = ( f u. { <. n , C >. } ) |
||
| Assertion | bnj958 | |- ( ( G ` i ) = ( f ` i ) -> A. y ( G ` i ) = ( f ` i ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj958.1 | |- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
|
| 2 | bnj958.2 | |- G = ( f u. { <. n , C >. } ) |
|
| 3 | nfcv | |- F/_ y f |
|
| 4 | nfcv | |- F/_ y n |
|
| 5 | nfiu1 | |- F/_ y U_ y e. ( f ` m ) _pred ( y , A , R ) |
|
| 6 | 1 5 | nfcxfr | |- F/_ y C |
| 7 | 4 6 | nfop | |- F/_ y <. n , C >. |
| 8 | 7 | nfsn | |- F/_ y { <. n , C >. } |
| 9 | 3 8 | nfun | |- F/_ y ( f u. { <. n , C >. } ) |
| 10 | 2 9 | nfcxfr | |- F/_ y G |
| 11 | nfcv | |- F/_ y i |
|
| 12 | 10 11 | nffv | |- F/_ y ( G ` i ) |
| 13 | 12 | nfeq1 | |- F/ y ( G ` i ) = ( f ` i ) |
| 14 | 13 | nf5ri | |- ( ( G ` i ) = ( f ` i ) -> A. y ( G ` i ) = ( f ` i ) ) |