Metamath Proof Explorer


Theorem bnj965

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj965.1
|- ( ps <-> A. i e. _om ( suc i e. N -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj965.2
|- ( ps" <-> [. G / f ]. ps )
bnj965.12000
|- C = U_ y e. ( f ` m ) _pred ( y , A , R )
bnj965.13000
|- G = ( f u. { <. n , C >. } )
Assertion bnj965
|- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )

Proof

Step Hyp Ref Expression
1 bnj965.1
 |-  ( ps <-> A. i e. _om ( suc i e. N -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
2 bnj965.2
 |-  ( ps" <-> [. G / f ]. ps )
3 bnj965.12000
 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )
4 bnj965.13000
 |-  G = ( f u. { <. n , C >. } )
5 4 bnj918
 |-  G e. _V
6 1 2 5 3 4 bnj1000
 |-  ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )