Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj965.1 | |- ( ps <-> A. i e. _om ( suc i e. N -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
bnj965.2 | |- ( ps" <-> [. G / f ]. ps ) |
||
bnj965.12000 | |- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
||
bnj965.13000 | |- G = ( f u. { <. n , C >. } ) |
||
Assertion | bnj965 | |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj965.1 | |- ( ps <-> A. i e. _om ( suc i e. N -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
2 | bnj965.2 | |- ( ps" <-> [. G / f ]. ps ) |
|
3 | bnj965.12000 | |- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
|
4 | bnj965.13000 | |- G = ( f u. { <. n , C >. } ) |
|
5 | 4 | bnj918 | |- G e. _V |
6 | 1 2 5 3 4 | bnj1000 | |- ( ps" <-> A. i e. _om ( suc i e. N -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |