Metamath Proof Explorer


Theorem botel

Description: An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypothesis botel.1
|- ( ph -> F. )
Assertion botel
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 botel.1
 |-  ( ph -> F. )
2 falim
 |-  ( F. -> ps )
3 1 2 syl
 |-  ( ph -> ps )