Metamath Proof Explorer


Theorem botel

Description: An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypothesis botel.1 ( 𝜑 → ⊥ )
Assertion botel ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 botel.1 ( 𝜑 → ⊥ )
2 falim ( ⊥ → 𝜓 )
3 1 2 syl ( 𝜑𝜓 )