Metamath Proof Explorer


Theorem brcnvssrid

Description: Any set is a converse subset of itself. (Contributed by Peter Mazsa, 9-Jun-2021)

Ref Expression
Assertion brcnvssrid
|- ( A e. V -> A `' _S A )

Proof

Step Hyp Ref Expression
1 ssid
 |-  A C_ A
2 brcnvssr
 |-  ( A e. V -> ( A `' _S A <-> A C_ A ) )
3 1 2 mpbiri
 |-  ( A e. V -> A `' _S A )