Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | brelg | |- ( ( R C_ ( C X. D ) /\ A R B ) -> ( A e. C /\ B e. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr | |- ( R C_ ( C X. D ) -> ( A R B -> A ( C X. D ) B ) ) |
|
2 | 1 | imp | |- ( ( R C_ ( C X. D ) /\ A R B ) -> A ( C X. D ) B ) |
3 | brxp | |- ( A ( C X. D ) B <-> ( A e. C /\ B e. D ) ) |
|
4 | 2 3 | sylib | |- ( ( R C_ ( C X. D ) /\ A R B ) -> ( A e. C /\ B e. D ) ) |