Metamath Proof Explorer


Theorem brelg

Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017)

Ref Expression
Assertion brelg
|- ( ( R C_ ( C X. D ) /\ A R B ) -> ( A e. C /\ B e. D ) )

Proof

Step Hyp Ref Expression
1 ssbr
 |-  ( R C_ ( C X. D ) -> ( A R B -> A ( C X. D ) B ) )
2 1 imp
 |-  ( ( R C_ ( C X. D ) /\ A R B ) -> A ( C X. D ) B )
3 brxp
 |-  ( A ( C X. D ) B <-> ( A e. C /\ B e. D ) )
4 2 3 sylib
 |-  ( ( R C_ ( C X. D ) /\ A R B ) -> ( A e. C /\ B e. D ) )