Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | brelg | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr | ⊢ ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) → ( 𝐴 𝑅 𝐵 → 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ) ) | |
2 | 1 | imp | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ) |
3 | brxp | ⊢ ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) | |
4 | 2 3 | sylib | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) |