Metamath Proof Explorer


Theorem brelg

Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017)

Ref Expression
Assertion brelg ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴𝐶𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 ssbr ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) → ( 𝐴 𝑅 𝐵𝐴 ( 𝐶 × 𝐷 ) 𝐵 ) )
2 1 imp ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ( 𝐶 × 𝐷 ) 𝐵 )
3 brxp ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ( 𝐴𝐶𝐵𝐷 ) )
4 2 3 sylib ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴𝐶𝐵𝐷 ) )