Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brelg | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | ⊢ ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) → ( 𝐴 𝑅 𝐵 → 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ) ) | |
| 2 | 1 | imp | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ) |
| 3 | brxp | ⊢ ( 𝐴 ( 𝐶 × 𝐷 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝑅 ⊆ ( 𝐶 × 𝐷 ) ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) |