Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brlmic | |- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmic | |- ~=m = ( `' LMIso " ( _V \ 1o ) ) |
|
| 2 | lmimfn | |- LMIso Fn ( LMod X. LMod ) |
|
| 3 | 1 2 | brwitnlem | |- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |