Metamath Proof Explorer


Theorem brlmic

Description: The relation "is isomorphic to" for modules. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmic R𝑚SRLMIsoS

Proof

Step Hyp Ref Expression
1 df-lmic 𝑚=LMIso-1V1𝑜
2 lmimfn LMIsoFnLMod×LMod
3 1 2 brwitnlem R𝑚SRLMIsoS