Metamath Proof Explorer


Theorem lmimfn

Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion lmimfn LMIsoFnLMod×LMod

Proof

Step Hyp Ref Expression
1 df-lmim LMIso=sLMod,tLModgsLMHomt|g:Bases1-1 ontoBaset
2 ovex sLMHomtV
3 2 rabex gsLMHomt|g:Bases1-1 ontoBasetV
4 1 3 fnmpoi LMIsoFnLMod×LMod