Metamath Proof Explorer


Definition df-lmim

Description: An isomorphism of modules is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group and scalar operations. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion df-lmim LMIso=sLMod,tLModgsLMHomt|g:Bases1-1 ontoBaset

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmim classLMIso
1 vs setvars
2 clmod classLMod
3 vt setvart
4 vg setvarg
5 1 cv setvars
6 clmhm classLMHom
7 3 cv setvart
8 5 7 6 co classsLMHomt
9 4 cv setvarg
10 cbs classBase
11 5 10 cfv classBases
12 7 10 cfv classBaset
13 11 12 9 wf1o wffg:Bases1-1 ontoBaset
14 13 4 8 crab classgsLMHomt|g:Bases1-1 ontoBaset
15 1 3 2 2 14 cmpo classsLMod,tLModgsLMHomt|g:Bases1-1 ontoBaset
16 0 15 wceq wffLMIso=sLMod,tLModgsLMHomt|g:Bases1-1 ontoBaset