Metamath Proof Explorer


Definition df-lmic

Description: Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion df-lmic 𝑚=LMIso-1V1𝑜

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmic class𝑚
1 clmim classLMIso
2 1 ccnv classLMIso-1
3 cvv classV
4 c1o class1𝑜
5 3 4 cdif classV1𝑜
6 2 5 cima classLMIso-1V1𝑜
7 0 6 wceq wff𝑚=LMIso-1V1𝑜