Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brneqtrd.1 | |- ( ph -> -. A R B ) |
|
| brneqtrd.2 | |- ( ph -> B = C ) |
||
| Assertion | brneqtrd | |- ( ph -> -. A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brneqtrd.1 | |- ( ph -> -. A R B ) |
|
| 2 | brneqtrd.2 | |- ( ph -> B = C ) |
|
| 3 | 2 | breq2d | |- ( ph -> ( A R B <-> A R C ) ) |
| 4 | 1 3 | mtbid | |- ( ph -> -. A R C ) |