Metamath Proof Explorer


Theorem brneqtrd

Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses brneqtrd.1 φ¬ARB
brneqtrd.2 φB=C
Assertion brneqtrd φ¬ARC

Proof

Step Hyp Ref Expression
1 brneqtrd.1 φ¬ARB
2 brneqtrd.2 φB=C
3 2 breq2d φARBARC
4 1 3 mtbid φ¬ARC