Metamath Proof Explorer


Theorem ssnct

Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssnct.1 φ ¬ A ω
ssnct.2 φ A B
Assertion ssnct φ ¬ B ω

Proof

Step Hyp Ref Expression
1 ssnct.1 φ ¬ A ω
2 ssnct.2 φ A B
3 ssct A B B ω A ω
4 2 3 sylan φ B ω A ω
5 1 adantr φ B ω ¬ A ω
6 4 5 pm2.65da φ ¬ B ω