Metamath Proof Explorer


Theorem ssnct

Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssnct.1 φ¬Aω
ssnct.2 φAB
Assertion ssnct φ¬Bω

Proof

Step Hyp Ref Expression
1 ssnct.1 φ¬Aω
2 ssnct.2 φAB
3 ssct ABBωAω
4 2 3 sylan φBωAω
5 1 adantr φBω¬Aω
6 4 5 pm2.65da φ¬Bω