Metamath Proof Explorer
Description: Sufficient condition for being a subclass of the union of an
intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ssuniint.x |
|
|
|
ssuniint.a |
|
|
|
ssuniint.b |
|
|
Assertion |
ssuniint |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssuniint.x |
|
| 2 |
|
ssuniint.a |
|
| 3 |
|
ssuniint.b |
|
| 4 |
1 2 3
|
elintd |
|
| 5 |
|
elssuni |
|
| 6 |
4 5
|
syl |
|