Metamath Proof Explorer
Description: Sufficient condition for being a subclass of the union of an
intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ssuniint.x |
⊢ Ⅎ 𝑥 𝜑 |
|
|
ssuniint.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
ssuniint.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) |
|
Assertion |
ssuniint |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssuniint.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
ssuniint.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
ssuniint.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) |
| 4 |
1 2 3
|
elintd |
⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝐵 ) |
| 5 |
|
elssuni |
⊢ ( 𝐴 ∈ ∩ 𝐵 → 𝐴 ⊆ ∪ ∩ 𝐵 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵 ) |