Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elintd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| elintd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| elintd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) | ||
| Assertion | elintd | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | elintd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | elintd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) | |
| 4 | 3 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) |
| 5 | 1 4 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
| 6 | elintg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) |
| 8 | 5 7 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝐵 ) |