Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elintd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
elintd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
elintd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) | ||
Assertion | elintd | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | elintd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
3 | elintd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑥 ) | |
4 | 3 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥 ) ) |
5 | 1 4 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
6 | elintg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) | |
7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) ) |
8 | 5 7 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝐵 ) |