Metamath Proof Explorer


Theorem ssdf

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssdf.1 𝑥 𝜑
ssdf.2 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
Assertion ssdf ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssdf.1 𝑥 𝜑
2 ssdf.2 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
3 2 ex ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝑥𝐵 )
5 dfss3 ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
6 4 5 sylibr ( 𝜑𝐴𝐵 )