Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| ssdf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | ||
| Assertion | ssdf | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | ssdf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 5 | dfss3 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |