Metamath Proof Explorer


Theorem ssdf

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssdf.1 xφ
ssdf.2 φxAxB
Assertion ssdf φAB

Proof

Step Hyp Ref Expression
1 ssdf.1 xφ
2 ssdf.2 φxAxB
3 2 ex φxAxB
4 1 3 ralrimi φxAxB
5 dfss3 ABxAxB
6 4 5 sylibr φAB