Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elintd.1 | |- F/ x ph |
|
elintd.2 | |- ( ph -> A e. V ) |
||
elintd.3 | |- ( ( ph /\ x e. B ) -> A e. x ) |
||
Assertion | elintd | |- ( ph -> A e. |^| B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintd.1 | |- F/ x ph |
|
2 | elintd.2 | |- ( ph -> A e. V ) |
|
3 | elintd.3 | |- ( ( ph /\ x e. B ) -> A e. x ) |
|
4 | 3 | ex | |- ( ph -> ( x e. B -> A e. x ) ) |
5 | 1 4 | ralrimi | |- ( ph -> A. x e. B A e. x ) |
6 | elintg | |- ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) ) |
|
7 | 2 6 | syl | |- ( ph -> ( A e. |^| B <-> A. x e. B A e. x ) ) |
8 | 5 7 | mpbird | |- ( ph -> A e. |^| B ) |