Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elintd.1 | |- F/ x ph |
|
| elintd.2 | |- ( ph -> A e. V ) |
||
| elintd.3 | |- ( ( ph /\ x e. B ) -> A e. x ) |
||
| Assertion | elintd | |- ( ph -> A e. |^| B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintd.1 | |- F/ x ph |
|
| 2 | elintd.2 | |- ( ph -> A e. V ) |
|
| 3 | elintd.3 | |- ( ( ph /\ x e. B ) -> A e. x ) |
|
| 4 | 3 | ex | |- ( ph -> ( x e. B -> A e. x ) ) |
| 5 | 1 4 | ralrimi | |- ( ph -> A. x e. B A e. x ) |
| 6 | elintg | |- ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( A e. |^| B <-> A. x e. B A e. x ) ) |
| 8 | 5 7 | mpbird | |- ( ph -> A e. |^| B ) |