Metamath Proof Explorer


Theorem elintd

Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses elintd.1
|- F/ x ph
elintd.2
|- ( ph -> A e. V )
elintd.3
|- ( ( ph /\ x e. B ) -> A e. x )
Assertion elintd
|- ( ph -> A e. |^| B )

Proof

Step Hyp Ref Expression
1 elintd.1
 |-  F/ x ph
2 elintd.2
 |-  ( ph -> A e. V )
3 elintd.3
 |-  ( ( ph /\ x e. B ) -> A e. x )
4 3 ex
 |-  ( ph -> ( x e. B -> A e. x ) )
5 1 4 ralrimi
 |-  ( ph -> A. x e. B A e. x )
6 elintg
 |-  ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) )
7 2 6 syl
 |-  ( ph -> ( A e. |^| B <-> A. x e. B A e. x ) )
8 5 7 mpbird
 |-  ( ph -> A e. |^| B )