Metamath Proof Explorer


Theorem elintg

Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion elintg
|- ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) )

Proof

Step Hyp Ref Expression
1 elequ1
 |-  ( z = y -> ( z e. x <-> y e. x ) )
2 1 ralbidv
 |-  ( z = y -> ( A. x e. B z e. x <-> A. x e. B y e. x ) )
3 eleq1
 |-  ( y = A -> ( y e. x <-> A e. x ) )
4 3 ralbidv
 |-  ( y = A -> ( A. x e. B y e. x <-> A. x e. B A e. x ) )
5 dfint2
 |-  |^| B = { z | A. x e. B z e. x }
6 2 4 5 elab2gw
 |-  ( A e. V -> ( A e. |^| B <-> A. x e. B A e. x ) )