Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opelresi.1 | |- C e. _V |
|
Assertion | brresi | |- ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | |- C e. _V |
|
2 | brres | |- ( C e. _V -> ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) ) |
|
3 | 1 2 | ax-mp | |- ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) |